Heteroatom quantum corrals and nanoplasmonics in graphene (HeQuCoG)

2015–2019

 

The objective of the “Heteroatom quantum corrals and nanoplasmonics in graphene” (HeQuCoG) project is to create atomically precise structures made of silicon and phosphorus atoms embedded in the lattice of graphene. This will be achieved by combining proven modeling techniques with sample fabrication via carefully controlled ion implantation, and subsequent manipulation in an atomic resolution scanning transmission electron microscope (STEM). The structures will be computationally designed for interesting nanoplasmonic enhancement and quantum confinement properties, and characterized by electron energy loss spectroscopy mapping in the STEM. The expected outcome is a systematic demonstration of truly atomic-level material design and the creation of freestanding “quantum corral” structures for the first time.The controlled manipulation of matter on truly the atomic scale has been a long-standing dream of nanotechnology. Pioneering directions towards have already been explored, chiefly with the help of scanning tunneling microscopy. However, compared to the manipulation of surface atoms, graphene heteroatoms have the advantage of being stable at room temperature and even if the sample is taken out of the instrument. Furthermore, the coupling of light to nanostructures via plasmon resonances is an intensively pursued and promising research field, which is awaiting breakthroughs in material design before the field can live up to its expected potential.

 

Funder: Austrian Science Fund

Project identifier: 28322

Principal investigator: T. Susi


Project publications

Showing entries 0 - 20 out of 33

2019


Su, C., Tripathi, M., Yan, Q. B., Wang, Z., Zhang, Z., Hofer, C., ... Li, J. (2019). Engineering single-atom dynamics with electron irradiation. Science Advances, 5(5), [eaav2252]. doi.org/10.1126/sciadv.aav2252


Kozubek, R., Tripathi, M., Ghorbani-Asl, M., Kretschmer, S., Madauß, L., Pollmann, E., ... Schleberger, M. (2019). Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. Journal of Physical Chemistry Letters, 10(5), 904-910. doi.org/10.1021/acs.jpclett.8b03666


2018


Tuček, J., Holá, K., Zoppellaro, G., Bloński, P., Langer, R., Medved, M., ... Zbořil, R. (2018). Zigzag sp2 Carbon Chains Passing through an sp3 Framework: A Driving Force toward Room-Temperature Ferromagnetic Graphene. ACS Nano, 12(12), 12847–12859. doi.org/10.1021/acsnano.8b08052


Tripathi, M., Markevich, A., Böttger, R., Facsko, S., Besley, E., Kotakoski, J., & Susi, T. (2018). Implanting Germanium into Graphene. ACS Nano, 12(5), 4641-4647. doi.org/10.1021/acsnano.8b01191


Skákalová, V., Kotrusz, P., Jergel, M., Susi, T., Mittelberger, A., Vretenár, V., ... Hulman, M. (2018). Chemical Oxidation of Graphite: Evolution of the Structure and Properties. Journal of Physical Chemistry C, 122(1), 929-935. doi.org/10.1021/acs.jpcc.7b10912


Tripathi, M., Mittelberger, A., Pike, N., Mangler, C., Meyer, J. C., Verstraete, M., ... Susi, T. (2018). Electron-Beam Manipulation of Silicon Dopants in Graphene. Nano Letters, 18(8), 5319–5323. doi.org/10.1021/acs.nanolett.8b02406


2017


Susi, T., Skákalová, V., Mittelberger, A., Kotrusz, P., Hulman, M., Pennycook, T. J., ... Meyer, J. C. (2017). Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Scientific Reports, 7(1), [4399]. doi.org/10.1038/s41598-017-04683-9


Showing entries 0 - 20 out of 33