Heteroatom quantum corrals and nanoplasmonics in graphene (HeQuCoG)

2015–2019

 

The objective of the “Heteroatom quantum corrals and nanoplasmonics in graphene” (HeQuCoG) project is to create atomically precise structures made of silicon and phosphorus atoms embedded in the lattice of graphene. This will be achieved by combining proven modeling techniques with sample fabrication via carefully controlled ion implantation, and subsequent manipulation in an atomic resolution scanning transmission electron microscope (STEM). The structures will be computationally designed for interesting nanoplasmonic enhancement and quantum confinement properties, and characterized by electron energy loss spectroscopy mapping in the STEM. The expected outcome is a systematic demonstration of truly atomic-level material design and the creation of freestanding “quantum corral” structures for the first time.The controlled manipulation of matter on truly the atomic scale has been a long-standing dream of nanotechnology. Pioneering directions towards have already been explored, chiefly with the help of scanning tunneling microscopy. However, compared to the manipulation of surface atoms, graphene heteroatoms have the advantage of being stable at room temperature and even if the sample is taken out of the instrument. Furthermore, the coupling of light to nanostructures via plasmon resonances is an intensively pursued and promising research field, which is awaiting breakthroughs in material design before the field can live up to its expected potential.

 

Funder: Austrian Science Fund

Project identifier: 28322

Principal investigator: T. Susi


Project publications

Showing entries 21 - 40 out of 40

2018


Skákalová, V., Kotrusz, P., Jergel, M., Susi, T., Mittelberger, A., Vretenár, V., Šiffalovič, P., Kotakoski, J., Meyer, J. C., & Hulman, M. (2018). Chemical Oxidation of Graphite: Evolution of the Structure and Properties. Journal of Physical Chemistry C, 122(1), 929-935. https://doi.org/10.1021/acs.jpcc.7b10912

2017




Scardamaglia, M., Susi, T., Struzzi, C., Snyders, R., Di Santo, G., Petaccia, L., & Bittencourt, C. (2017). Spectroscopic observation of oxygen dissociation on nitrogen-doped graphene. Scientific Reports, 7, Article 7960. https://doi.org/10.1038/s41598-017-08651-1

Mirzayev, R., Mustonen, K., Monazam, M. R. A., Mittelberger, A., Pennycook, T. J., Mangler, C., Susi, T., Kotakoski, J., & Meyer, J. C. (2017). Buckyball sandwiches. Science Advances, 3(6), Article e1700176. https://doi.org/10.1126/sciadv.1700176

Hardcastle, T. P., Seabourne, C. R., Kepaptsoglou, D. M., Susi, T., Nicholls, R. J., Brydson, R. M. D., Scott, A. J., & Ramasse, Q. M. (2017). Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene. Journal of Physics: Condensed Matter, 29(22), Article 225303. https://doi.org/10.1088/1361-648X/aa6c4f

Susi, T., Hardcastle, T. P., Hofsäss, H., Mittelberger, A., Pennycook, T., Mangler, C., Drummond-Brydson, R., Scott, A. J., Meyer, J. C., & Kotakoski, J. (2017). Single-atom spectroscopy of phosphorus dopants implanted into graphene. 2D Materials, 4(2), Article 021013. https://doi.org/10.1088/2053-1583/aa5e78

Elibol, K., Susi, T., O'Brien, M., Bayer, B. C., Pennycook, T. J., McEvoy, N., Duesberg, G. S., Meyer, J. C., & Kotakoski, J. (2017). Grain boundary-mediated nanopores in molybdenum disulfide grown by chemical vapor deposition. Nanoscale, 9(4), 1591-1598. https://doi.org/10.1039/c6nr08958e

2016


Erbahar, D., Susi, T., Rocquefelte, X., Bittencourt, C., Scardamaglia, M., Blaha, P., Guttmann, P., Rotas, G., Tagmatarchis, N., Zhu, X., Hitchcock, A. P., & Ewels, C. P. (2016). Spectromicroscopy of C-60 and azafullerene C59N: Identifying surface adsorbed water. Scientific Reports, 6, Article 35605. https://doi.org/10.1038/srep35605

Susi, T., Hofer, C., Argentero, G., Leuthner, G. T., Pennycook, T. J., Mangler, C., Meyer, J. C., & Kotakoski, J. (2016). Isotope analysis in the transmission electron microscope. Nature Communications, 7, Article 13040. https://doi.org/10.1038/ncomms13040

Kaskela, A., Laiho, P., Fukaya, N., Mustonen, K., Susi, T., Jiang, H., Houbenov, N., Ohno, Y., & Kauppinen, E. I. (2016). Highly individual SWCNTs for high performance thin film electronics. Carbon, 103, 228-234. https://doi.org/10.1016/j.carbon.2016.02.099

Showing entries 21 - 40 out of 40