Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors

Author(s)
Laura Guardia, Loreto Suarez, Nausika Querejeta, Viliam Vretenar, Peter Kotrusz, Viera Skakalova, Teresa A. Centeno
Abstract

We present a simple and effective alternative which optimizes electrodes based on low-cost carbons for high-performance supercapacitors. The combination with reduced graphene oxide (rGO) greatly improves the operation of microporous carbons easily produced by one-pot activation of grape seeds. The use of composite electrodes with rGO lowers the supercapacitor resistance and enables a much higher rate capability.

The mixture of rGO flakes and particles of a highly porous carbon obtained by KOH activation allows retaining the high capacitance of 260 F g(-1) of the standard electrodes at 1 mA cm(-2) in aqueous H2SO4 whereas the value at 200 mA cm(-2) is increased by around 2.4 times. Consequently, at high current density, the capacitor assembled with these composites stores eight times more energy and the power density is multiplied by four.

The synergy between rGO and an ultramicroporous carbon produced by CO2-activation results extremely profitable, the cell assembled with composite electrodes reaching three times more energy and power at 200 mA cm(-2) than the best performance of the standard counterpart.

More importantly, the higher density of the composite electrodes leads to a capacitance of around 200 F cm(-3) which translates into a remarkable improvement in the supercapacitor operation normalized to volume. (C) 2018 Elsevier Ltd. All rights reserved.

Organisation(s)
Physics of Nanostructured Materials
External organisation(s)
Spanish National Research Council (CSIC), Slovak University of Technology in Bratislava, Danubia NanoTech Sro
Journal
Electrochimica Acta
Volume
298
Pages
910-917
No. of pages
8
ISSN
0013-4686
DOI
https://doi.org/10.1016/j.electacta.2018.12.160
Publication date
03-2019
Peer reviewed
Yes
Austrian Fields of Science 2012
104005 Electrochemistry, 103018 Materials physics
Keywords
ASJC Scopus subject areas
Chemical Engineering(all), Electrochemistry
Portal url
https://ucris.univie.ac.at/portal/en/publications/biomass-wastecarbonreduced-graphene-oxide-composite-electrodes-for-enhanced-supercapacitors(ce8b4f0b-1c58-4182-b863-61a182774eb5).html