Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films
- Author(s)
- Bernhard C, Bayer, Sabina Caneva, Timothy J. Pennycook, Jani Kotakoski, Clemens Mangler, Stephan Hofmann, Jannik C. Meyer
- Abstract
We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping hBN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes.
- Organisation(s)
- Physics of Nanostructured Materials
- External organisation(s)
- University of Cambridge
- Journal
- ACS Nano
- Volume
- 11
- Pages
- 4521-4527
- No. of pages
- 7
- ISSN
- 1936-0851
- DOI
- https://doi.org/10.1021/acsnano.6b08315
- Publication date
- 05-2017
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 103042 Electron microscopy, 103018 Materials physics
- Keywords
- ASJC Scopus subject areas
- General Engineering, General Physics and Astronomy, General Materials Science
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/c22ff788-1701-45b3-86f8-915a1a16c5dd