Logo der Universität Wien

Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction

Authors/others:Ebner, ChristianSarkar, R. (Arizona State University) Rajagopalan, J. (Arizona State University) Rentenberger, C.

A novel technique is used to measure the atomic-level elastic strain tensor of amorphous materials by tracking geometric changes of the first diffuse ring of selected area electron diffraction patterns (SAD). An automatic procedure, which includes locating the centre and fitting an ellipse to the diffuse ring with sub-pixel precision is developed for extracting the 2-dimensional strain tensor from the SAD patterns. Using this technique, atomic-level principal strains from micrometre-sized regions of freestanding amorphous Ti0.45Al0.55 thin films were measured during in-situ TEM tensile deformation. The thin films were deformed using MEMS based testing stages that allow simultaneous measurement of the macroscopic stress and strain. The calculated atomic-level principal strains show a linear dependence on the applied stress, and good correspondence with the measured macroscopic strains. The calculated Poisson's ratio of 0.23 is reasonable for brittle metallic glasses. The technique yields a strain accuracy of about 1×10-4 and shows the potential to obtain localized strain profiles/maps of amorphous thin film samples.

Number of pages:8
Date of publication:1.6.2016
Journal title:Ultramicroscopy
Digital Object Identifier (DOI):http://dx.doi.org/10.1016/j.ultramic.2016.04.004
Publication Type:Article
Research Group Physics of Nanostructured Materials
Faculty of Physics

University of Vienna
Boltzmanngasse 5
A-1090 Vienna
T: +43-1-4277-72802
F: +43-1-4277-872802
University of Vienna | Universitätsring 1 | 1010 Vienna | T +43-1-4277-0