Logo der Universität Wien

Ultrafast electronic response of graphene to a strong and localized electric field

Authors/others:Gruber, Elisabeth (Technische Universität Wien) Wilhelm, Richard A. (Technische Universität Wien) Petuya, Remi (Donostia Int Phys Ctr) Smejkal, Valerie (Technische Universität Wien) Kozubek, Roland (Universität Duisburg-Essen) Hierzenberger, Anke (Universität Duisburg-Essen) Bayer, Bernhard C.Aldazabal, Inigo (Ctr Mixto CSIC UPV EHU MPC, Ctr Fis Mat) Kazansky, Andrey K. (Donostia Int Phys Ctr) Libisch, Florian (Technische Universität Wien) Krasheninnikov, Arkady V. (Helmholtz-Zentrum Dresden-Rossendorf) Schleberger, Marika (Universität Duisburg-Essen) Facsko, Stefan (Helmholtz-Zentrum Dresden-Rossendorf) Borisov, Andrei G. (Univ Paris 11, Centre National de la Recherche Scientifique (CNRS), University of Paris Sud - Paris XI, Universite Paris Saclay (ComUE), CNRS, Inst Sci Mol Orsay, UMR 8214) Arnau, Andres (Donostia Int Phys Ctr) Aumayr, Friedrich (Technische Universität Wien)
Abstract:The way conduction electrons respond to ultrafast external perturbations in low dimensional materials is at the core of the design of future devices for (opto) electronics, photodetection and spintronics. Highly charged ions provide a tool for probing the electronic response of solids to extremely strong electric fields localized down to nanometre-sized areas. With ion transmission times in the order of femtoseconds, we can directly probe the local electronic dynamics of an ultrathin foil on this timescale. Here we report on the ability of freestanding single layer graphene to provide tens of electrons for charge neutralization of a slow highly charged ion within a few femtoseconds. With values higher than 10(12) A cm(-2), the resulting local current density in graphene exceeds previously measured breakdown currents by three orders of magnitude. Surprisingly, the passing ion does not tear nanometre-sized holes into the single layer graphene. We use time-dependent density functional theory to gain insight into the multielectron dynamics.
Number of pages:7
Date of publication:21.12.2016
Journal title:Nature Communications
Digital Object Identifier (DOI):http://dx.doi.org/10.1038/ncomms13948
Publication Type:Article
Research Group Physics of Nanostructured Materials
Faculty of Physics

University of Vienna
Boltzmanngasse 5
A-1090 Vienna
T: +43-1-4277-72802
F: +43-1-4277-872802
University of Vienna | Universitätsring 1 | 1010 Vienna | T +43-1-4277-0